Autonomía digital y tecnológica

Código e ideas para una internet distribuida

Linkoteca. D3


Python geopandas choropleth map

There are different ways of creating choropleth maps in Python. In a previous notebook, I showed how you can use the Basemap library to accomplish this. More than 2 years have passed since publication and the available tools have evolved a lot. In this notebook I use the GeoPandas library to create a choropleth map. As you’ll see the code is more concise and easier to follow along.

Many datasets are intrinsically hierarchical. Consider geographic entities, such as census blocks, census tracts, counties and states; the command structure of businesses and governments; file systems and software packages. And even non-hierarchical data may be arranged empirically into a hierarchy, as with k-means clustering or phylogenetic trees.

This module implements several popular techniques for visualizing hierarchical data:

Node-link diagrams show topology using discrete marks for nodes and links, such as a circle for each node and a line connecting each parent and child. The “tidy” tree is delightfully compact, while the dendrogram places leaves at the same level. (These have both polar and Cartesian forms.) Indented trees are useful for interactive browsing.

Adjacency diagrams show topology through the relative placement of nodes. They may also encode a quantitative dimension in the area of each node, for example to show revenue or file size. The “icicle” diagram uses rectangles, while the “sunburst” uses annular segments.

Enclosure diagrams also use an area encoding, but show topology through containment. A treemap recursively subdivides area into rectangles. Circle-packing tightly nests circles; this is not as space-efficient as a treemap, but perhaps more readily shows topology.