Autonomía digital y tecnológica

Código e ideas para una internet distribuida

Linkoteca. ciencia de datos


“La ciencia de los datos puede ayudar a formar a ciudadanos capaces de leer las noticias sin dejarse engañar por gráficos y datos maliciosos”.

“El tratamiento de datos para la resolución de problemas reales y la toma de decisiones debería ser una competencia transversal básica en todos los niveles educativos”, sentencia Teresa Sancho, directora del grado en Ciencia de Datos de la Universitat Oberta de Catalunya (UOC). “No es necesario crear una asignatura para ello; basta con introducir la perspectiva propia de la ciencia de datos en las distintas asignaturas que existen”.

NumPy (short for Numerical Python) is one of the top libraries equipped with useful resources to help data scientists turn Python into a powerful scientific analysis and modelling tool. The popular open source library is available under the BSD license. It is the foundational Python library for performing tasks in scientific computing. NumPy is part of a bigger Python-based ecosystem of open source tools called SciPy.

Pandas is another great library that can enhance your Python skills for data science. Just like NumPy, it belongs to the family of SciPy open source software and is available under the BSD free software license.

Matplotlib is also part of the SciPy core packages and offered under the BSD license. It is a popular Python scientific library used for producing simple and powerful visualizations. You can use the Python framework for data science for generating creative graphs, charts, histograms, and other shapes and figures—without worrying about writing many lines of code. For example, let’s see how the Matplotlib library can be used to create a simple bar chart.