Autonomía digital y tecnológica

Código e ideas para una internet distribuida

Linkoteca. cables submarinos


cables submarinos canarias 2015

Los cables submarinos en Canarias que conectan las islas entre sí son los siguientes. Entre paréntesis se indica el año de puesta en servicio:

  • Cables interinsulares de Telefónica: salvo en el caso de El Hierro, su configuración en anillos evita que una isla quede desconectada por la rotura de un cable.
    • Transcan 2 – S1: Gran Canaria – Fuerteventura (1990)
    • Transcan 2 – S2: Fuerteventura – Lanzarote (1990)
    • Pencan 5 – S2 (TFE-GC): Tenerife – Gran Canaria (1992)
    • Tegopa – S1: Tenerife – La Gomera (1995)
    • Tegopa – S2: La Gomera – La Palma (1995)
    • Candalta 1: Tenerife – Gran Canaria (1999)
    • Transcan 3: Gran Canaria – Lanzarote (1999)
    • Telapa: Tenerife – La Palma (2004)
    • Gomera-Hierro: La Gomera – El Hierro (2007)
    • Candalta 2: Tenerife – Gran Canaria (2010)
  • Cable Submarino de Canarias: dispone de dos cables submarinos entre Tenerife y Gran Canaria (2002).
  • Canalink: dispone de dos cables submarinos entre Tenerife y Gran Canaria y uno entre Tenerife y La Palma (2011).

 

Además, las islas están conectadas con el exterior por los siguientes sistemas:

  • Telefónica dispone de tres cables submarinos, dos conectan Cádiz con Tenerife (PENCAN 6 y PENCAN 8) y el tercero (PENCAN 7) con Gran Canaria. Los dos últimos fueron ampliados en 2015 con tecnología 100G.
  • Canalink dispone de un sistema de cable submarino que conecta Tenerife con Cádiz; este cable dispone de un ramal que conecta con Marruecos.
  • La isla de Tenerife está conectada al sistema ACE (Africa Coast to Europe), consorcio con participación de Orange.
  • La isla de Gran Canaria está conectada al sistema WACS (West African Cable System), consorcio con participación de Vodafone.

the telecom operator locates the damaged area by zeroing in on the problematic part. To do this, they send signal pulses through the cable from one end or base station. The damaged area (break) will bounce back the pulse to the signalling site which sent the data. Calculating the time delay from the reflected signal, engineers can zero in on the exact point and area of the problem. Then they send out a large cable repair ship, with fresh optic cables to replace the defective part under the sea. The cable is then lifted from the sea bed using special hooks (grapnel) and dragged onto the ship. The faulty cables are then spliced onboard, joined with a fresh cable, sealed with a watertight and anticorrosive covering and returned back to the seabed. Then the ship sends out the information to the base stations to test the cable again. Once the test signals are reaching the destination, the work is confirmed and the cable is repaired successfully. The data is then switched on and the connection restored. The entire process can take up to 16 hours or more, depending the number of cable breaks, successful repairs, time of day, weather conditions at sea and ships around the area.

Climate disaster could take away both their connection and a crucial source of income. And, ironically enough, these cables are used to help gather data on climate impacts, so climate change could mess up the very tools we need to monitor the impact of climate change.